Wednesday, January 30, 2013



Inside the metal detector's loop there is a coil of wire called the transmit coil. Electronic current is driven through the coil to create an electromagnetic field. The direction of the current flow is reversed several thousand times every second; the transmit frequency "operating frequency" refers to the number of times per second that the current flow goes from clockwise to counterclockwise and back to clockwise again.
When the current flows in a given direction, a magnetic field is produced whose polarity  points into the ground; when the current flow is reversed, the field's polarity points out of the ground. Any metallic object which happens to be nearby will have a flow of current induced inside of it by the influence of the changing magnetic field, in much the same way that an electric generator produces electricity by moving a coil of wire inside a fixed magnetic field. This current flow inside a metal object in turn produces its own magnetic field, with a polarity that tends to be pointed opposite to the transmit field.


A second coil of wire inside the loop, the receive coil, is arranged so that nearly all of the current that would ordinarily flow in it due to the influence of the transmitted field is cancelled out. Therefore, the field produced by the currents flowing in the nearby metal object will cause currents to flow in the receive coil which may be amplified and processed by the metal detector's electronics without being swamped by currents resulting from the much stronger transmitted field.
The resulting received signal will usually appear delayed when compared to the transmitted signal. This delay is due to the tendency of conductors to impede the flow of current (resistance) and to impede changes in the flow of current (inductance). We call this apparent delay "phase shift". The largest phase shift will occur for metal objects which are primarily inductive; large, thick objects made from excellent conductors like gold, silver, and copper. Smaller phase shifts are typical for objects which are primarily resistive; smaller, thinner objects, or those composed of less conductive materials.

Tuesday, January 08, 2013

Electrical Jumper

Wire Jumper

A wire jumper is a small piece of uninsulated wire that is place in two adjacent PCB holes and soldered into position based on our requirement.It is called jumper because,The wire jumps the electrical signal or power from one pcb hole to another.

Standard Wire Jumper

Sometimes wires may be used to make a connection between two contacts.

Plastic Jumper

Jumpers are also made up of non-conductive form of plastic for our convenience.When this plastic jumper is placed on the pins it made a connection between two pins. 

Hardwork Can Never Ever Fails..
Best Luck...