Sunday, July 22, 2012

2D Convolution in Image Processing-Animation

2D Convolution (image processing):

-An image processing operation that is used to spatially filter an image. 
-A convolution is defined by a kernel that is a small matrix of fixed numbers (coefficients). 
-The size of the kernel, the numbers within it, and a single normalizer value define the operation that is applied to the image. 
-The kernel is applied to the image by placing the kernel over the image to be convolved and sliding it around to center it over every pixel in the original image. At each placement the numbers (pixel values) from the original image are multiplied by the kernel number that is currently aligned above it. 
-The sum of all these products is tabulated and divided by the kernel's normalizer. This result is placed into the new image at the position of the kernel's center. The kernel is translated to the next pixel position and the process repeats until all image pixels have been processed. 
-As an example, a 3x3 kernel holding all 1's with a normalizer of 9 performs a neighborhood averaging operation. Each pixel in the new image is the average of its 9 neighbors from the original.  
                                    
                                           2D Convolution on single Pixel, using 3 X 3 Kernel
                                              3x3 kernel requires 9 passes: normalizer = 9. 

  
-In a raster type image, only one Kernel coefficient operates during a single pass; after 9 passes, all 3x3 coefficients will have operated on the image. 
 
 
 
Hardwork Can Never Ever Fails....
Best Luck....

2 comments:

  1. Nice start guys...I went through the website and I found that you made decent point here. Keep up the topic that everyone can choose one of the best. Thanks.2D Animation Studios

    ReplyDelete

Thank you for your valuable suggestion. If you feel this post useful, please share our Blog with others!!! Comments just for Backlinking your Website or Blog will be Deleted...