Class A Amplifier operation is where the entire input signal waveform is faithfully reproduced at the amplifiers output as the transistor is perfectly biased within its active region, thereby never reaching either of its Cut-off or Saturation regions. This then results in the AC input signal being perfectly "centred" between the amplifiers upper and lower signal limits as shown below.
In this configuration, the Class A amplifier uses the same transistor for both halves of the output waveform and due to its biasing arrangement the output transistor always has current flowing through it, even if there is no input signal. In other words the output transistors never turns "OFF". This results in the class A type of operation being very inefficient as its conversion of the DC supply power to the AC signal power delivered to the load is usually very low.
Generally, the output transistor of a Class A amplifier gets very hot even when there is no input signal present so some form of heat sinking is required. The DC current flowing through the output transistor (Ic) when there is no output signal will be equal to the current flowing through the load. Then a pure Class A amplifier is very inefficient as most of the DC power is converted to heat.
----It has low efficiency of less than 40% but good signal reproduction and linearity
Hardwork Can Never Ever Fails...
Best Luck..
Class A-Circuit Diagram |
In this configuration, the Class A amplifier uses the same transistor for both halves of the output waveform and due to its biasing arrangement the output transistor always has current flowing through it, even if there is no input signal. In other words the output transistors never turns "OFF". This results in the class A type of operation being very inefficient as its conversion of the DC supply power to the AC signal power delivered to the load is usually very low.
Generally, the output transistor of a Class A amplifier gets very hot even when there is no input signal present so some form of heat sinking is required. The DC current flowing through the output transistor (Ic) when there is no output signal will be equal to the current flowing through the load. Then a pure Class A amplifier is very inefficient as most of the DC power is converted to heat.
Class A Output Waveform |
----It has low efficiency of less than 40% but good signal reproduction and linearity
Hardwork Can Never Ever Fails...
Best Luck..
No comments:
Post a Comment
Thank you for your valuable suggestion. If you feel this post useful, please share our Blog with others!!! Comments just for Backlinking your Website or Blog will be Deleted...